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One-Sentence Summary. In source-free Maxwell theory, the same local
continuity structure yields (i) global conservation laws and Newton-like motion
for localized energy knots, and (ii) the Schrödinger equation as the narrow-band
envelope limit of a toroidal standing mode, with m and ℏ emerging from the
fundamental mode.

Abstract. We start from source-free Maxwell equations and derive the wave
equation, then derive exact local continuity laws for energy, momentum, and
angular momentum using the Poynting theorem and the Maxwell stress ten-
sor. Integrating these identities yields global conservation statements. When
electromagnetic energy is localized into a persistent circulating knot, its center-
of-energy motion obeys Newton-like inertia and momentum-balance relations
as flux bookkeeping, not as postulates. We then study a self-confined toroidal
standing mode and isolate its forward-time narrow-band envelope via an analytic-
signal projection. Keeping derivative terms exactly gives an envelope equation
with a controlled remainder of order (∆ω/ω11)2; discarding only that bounded
term yields the Schrödinger equation. In this construction, m = E11/c

2 and
ℏ = E11/ω11 are geometric properties of the fundamental toroidal mode.
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signal, narrow-band limit, emergent inertia, emergent Planck constant, emergent
quantum mechanics
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1. Motivation
We want a document that does not assume:

• particles,
• mechanical “forces” as primitives,
• Newton’s laws as axioms,
• quantum postulates as axioms.

We assume only:

• source-free Maxwell dynamics

We show that: - Newton-like mechanics for a localized object is integrated
continuity bookkeeping, - Schrödinger dynamics is the narrow-band envelope
limit of Maxwell waves on a toroidal mode.

2. Assumptions and definitions
2.1. Source-free Maxwell equations
In a source-free region:
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∇ · E = 0, ∇ · B = 0,

∇ × E = −∂tB, ∇ × B = µ0ϵ0 ∂tE.

From this system we derive wave propagation. Taking the curl of Faraday’s law
and substituting the curl equation for B yields

∇2E − µ0ϵ0 ∂
2
t E = 0.

An identical equation follows for B.

From the coefficient of the time-derivative term, the wave speed is

c = 1
√
µ0ϵ0

.

2.2. Electromagnetic energy density and energy flux

u = ϵ0
2 E2 + 1

2µ0
B2, S = 1

µ0
E × B.

2.3. Electromagnetic momentum density

g = S
c2 = ϵ0 E × B.

2.4. Maxwell stress tensor

Tij = ϵ0

(
EiEj − 1

2δijE2
)

+ 1
µ0

(
BiBj − 1

2δijB2
)
.

Tij is the local momentum-flux bookkeeping of the field.

3. Part I — Energy continuity is exact
3.1. Poynting theorem
Start from:

∇ × E = −∂tB, ∇ × B = µ0ϵ0 ∂tE.

Use:

∇ · (E × B) = B · (∇ × E) − E · (∇ × B).
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Substitute Maxwell and rewrite as derivatives:

∇ · S = −∂tu, ⇒ ∂tu+ ∇ · S = 0.

3.2. Global energy conservation
Integrate over a fixed volume V with boundary ∂V :

d

dt

∫
V

u d3x+
∫

∂V

S · dA = 0.

Define:

UV =
∫

V

u d3x, ΦV =
∫

∂V

S · dA,

so:

d

dt
UV = −ΦV .

If ΦV = 0, then UV is constant.

4. Part II — Momentum continuity is exact
4.1. Local momentum continuity
Start from:

g = ϵ0 E × B.

Differentiate and substitute Maxwell:

∂tg = 1
µ0

(∇ × B) × B − ϵ0 E × (∇ × E).

Use:

(∇ × A) × A = (A · ∇)A − 1
2∇(A2) + A(∇ · A),

and ∇ · E = 0, ∇ · B = 0, giving

(∇ × A) × A = (A · ∇)A − 1
2∇(A2).
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So:

∂tg = 1
µ0

(
(B · ∇)B − 1

2∇(B2)
)

− ϵ0

(
(E · ∇)E − 1

2∇(E2)
)
.

In components, using ∂j(BiBj) = (B · ∇)Bi and ∂j(EiEj) = (E · ∇)Ei, this
becomes:

∂tgi = −∂j

[
ϵ0

(
EiEj − 1

2δijE2
)

+ 1
µ0

(
BiBj − 1

2δijB2
)]

.

With the definition of Tij :

∂tgi + ∂jTij = 0, equivalently ∂tg + ∇ · T = 0.

4.2. Global momentum conservation
Integrate over V :

d

dt

∫
V

gi d
3x+

∫
∂V

Tijnj dA = 0.

Define:

Pi(V ) =
∫

V

gi d
3x, F

(boundary)
i (V ) =

∫
∂V

Tijnj dA,

so:

d

dt
Pi(V ) = −F (boundary)

i (V ).

5. Part III — Angular momentum continuity is
exact

5.1. Angular momentum density and flux

ℓ = x × g, L(V ) =
∫

V

x × g d3x.

Using momentum continuity, angular momentum changes only by torque flux:

d

dt
L(V ) = −

∫
∂V

(x × (T · n)) dA.
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6. Part IV — Newton-like laws for a localized
electromagnetic knot

6.1. Localized, persistent energy region
Let K(t) be a moving region such that energy is concentrated inside it and
boundary flux is small.

EK =
∫

K(t)
u d3x, PK =

∫
K(t)

g d3x.

6.2. Center of energy and emergent inertial mass

XK = 1
EK

∫
K(t)

x u d3x.

When boundary terms are negligible:

EK ẊK ≈
∫

K

S d3x, PK ≈ EK

c2 ẊK .

Define:

mK := EK

c2 .

6.3. Momentum balance as the net-force law
d

dt
PK = −

∫
∂K

T · n dA =: FK .

If EK is roughly constant:

mK ẌK ≈ FK .

7. Part V — Schrödinger dynamics as a narrow-
band Maxwell envelope

7.1. Maxwell wave equation for a field component
For any Cartesian component F (r, t) of E or B:

(
∇2 − 1

c2 ∂
2
t

)
F (r, t) = 0.
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7.2. Toroidal standing modes
Take a toroidal topology with radii R and r. Integer windings (n1, n2) give

k1 = n1

R
, k2 = n2

r
, k2 = k2

1 + k2
2, ωn1n2 = ck.

Define the fundamental mode (1, 1) with (E11, ω11) and

ℏ = E11

ω11
, m = E11

c2 .

7.3. Forward-time spectral projection and envelope
Define the analytic (positive-frequency) signal:

F (+)(r, t) =
∫ ∞

0
F̃ (r, ω) e−iωt dω.

Extract the carrier at ω11:

ψ(r, t) = eiω11t F (+)(r, t).

7.4. Exact envelope equation and controlled remainder
Substitution into the wave equation yields:

∇2ψ − 1
c2 ∂

2
t ψ + 2iω11

c2 ∂tψ + ω2
11
c2 ψ = 0.

Rearrange:

i∂tψ = − c2

2ω11
∇2ψ + 1

2ω11c2 ∂
2
t ψ.

If the envelope has RMS bandwidth ∆ω with ϵ = ∆ω/ω11 ≪ 1, then the last
term is bounded by O(ϵ2) in norm.

Dropping only this controlled term gives:

i∂tψ = − c2

2ω11
∇2ψ +O(ϵ2).

Using ℏ = E11/ω11 and m = E11/c
2 turns the coefficient into ℏ/(2m), yielding:

iℏ ∂tψ = − ℏ2

2m∇2ψ +O(ϵ2).
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8. Scope
8.1. Derived from source-free Maxwell structure

• energy continuity:
∂tu+ ∇ · S = 0

• momentum continuity:
∂tg + ∇ · T = 0

• angular momentum flux balance
• Newton-like motion of localized energy knots as integrated flux bookkeeping
• Schrödinger dynamics as a narrow-band envelope limit with controlled
O(ϵ2) remainder

• emergent m and ℏ from (E11, ω11)

8.2. Not claimed here
• existence and stability of knots for arbitrary initial data,
• uniqueness of the toroidal mode or its formation mechanism,
• full quantum measurement theory.

These are separate questions.

9. Closing statement
In a source-free Maxwell universe, continuity laws are identities, not postulates.
When energy localizes into a persistent knot, its coarse motion follows from
flux balance and looks Newtonian. When a toroidal mode is narrow-band, its
envelope obeys Schrödinger dynamics up to a controlled O(ϵ2) correction.

8


	Motivation
	Assumptions and definitions
	Part I — Energy continuity is exact
	Part II — Momentum continuity is exact
	Part III — Angular momentum continuity is exact
	Part IV — Newton-like laws for a localized electromagnetic knot
	Part V — Schrödinger dynamics as a narrow-band Maxwell envelope
	Scope
	Closing statement

