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One-Sentence Summary. In source-free Maxwell theory, the same local
continuity structure yields (i) global conservation laws and Newton-like motion
for localized energy knots, and (ii) the Schrédinger equation as the narrow-band
envelope limit of a toroidal standing mode, with m and A emerging from the
fundamental mode.

Abstract. We start from source-free Maxwell equations and derive the wave
equation, then derive exact local continuity laws for energy, momentum, and
angular momentum using the Poynting theorem and the Maxwell stress ten-
sor. Integrating these identities yields global conservation statements. When
electromagnetic energy is localized into a persistent circulating knot, its center-
of-energy motion obeys Newton-like inertia and momentum-balance relations
as flux bookkeeping, not as postulates. We then study a self-confined toroidal
standing mode and isolate its forward-time narrow-band envelope via an analytic-
signal projection. Keeping derivative terms exactly gives an envelope equation
with a controlled remainder of order (Aw/wi1)?; discarding only that bounded
term yields the Schrédinger equation. In this construction, m = Ei;/c? and
h = E11/w11 are geometric properties of the fundamental toroidal mode.
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1. Motivation

We want a document that does not assume:

e particles,

e mechanical “forces” as primitives,
e Newton’s laws as axioms,

e quantum postulates as axioms.

We assume only:
o source-free Maxwell dynamics

We show that: - Newton-like mechanics for a localized object is integrated
continuity bookkeeping, - Schréodinger dynamics is the narrow-band envelope
limit of Maxwell waves on a toroidal mode.

2. Assumptions and definitions

2.1. Source-free Maxwell equations

In a source-free region:



V-E=0, V-B=0,

VXxE= —8tB, VxB= Ho€o 8tE

From this system we derive wave propagation. Taking the curl of Faraday’s law
and substituting the curl equation for B yields

V2E — ju9eo 0°E = 0.

An identical equation follows for B.

From the coefficient of the time-derivative term, the wave speed is

1
Cc = .
v/ Ho€o
2.2. Electromagnetic energy density and energy flux
w2y g g-lpym
2 240 )

2.3. Electromagnetic momentum density

S
g=5=cEXxB.
C

2.4. Maxwell stress tensor

1 1 1
T = €o <EEJ — 25,,»E2) + ™ (BiBj - 25ijBQ> :
0

T;; is the local momentum-flux bookkeeping of the field.

3. Part I — Energy continuity is exact

3.1. Poynting theorem

Start from:

VXE= —8tB, VxB= Ho€o 8tE

Use:

V- (ExB)=B-(VxE)—-E-(V xB,).



Substitute Maxwell and rewrite as derivatives:
V-8 =—-du, = u+V-S=0.

3.2. Global energy conservation

Integrate over a fixed volume V with boundary 0V:

i f v+
— ud’r + S-dA =0.
dt Jy av

Define:
Uvz/ud3x, Oy = S - dA,
14 ov
SO:
d
—Uy = —Py.
dt 14 \4

If &y =0, then Uy is constant.

4. Part II — Momentum continuity is exact

4.1. Local momentum continuity

Start from:
g =€ E x B.

Differentiate and substitute Maxwell:

1
8tg:M—(V><B)><B—eoE><(V><E).
0

Use:

(VxA)xA=(A-V)A - %V(AQ)—FA(V-A),

and V-E =0,V -B =0, giving

(VxA)xA=(A-V)A - %V(AQ).



So:

1

! 2V(E2)) :

g = ™ ((B -V)B — ;V(B2)> — €0 ((E -V)E —

In components, using 0;(B;B;) = (B - V)B; and 0;(E;E;) = (E - V)E;, this
becomes:

1 1 1
atgi = —0j |:60 (EiEj — 257]E2> =+ % (B,Bj - 251]B2):| .

With the definition of Tj;:
Owgi + 013 =0, equivalently g+ V- -T=0.

4.2. Global momentum conservation

Integrate over V:

i g; d3x —+ / T,-jnj dA = O
dt Jv ov

Define:

Pl(V) == /ng de, Fi(boundary) (V) == /av Tijnj dA,

SO:

d (boundary)
—P,(V)=-F, (V).
L p(v) = —FPom) ()

5. Part IIT — Angular momentum continuity is
exact

5.1. Angular momentum density and flux

L=xxg, L(V):/xxgd?’x.
v

Using momentum continuity, angular momentum changes only by torque flux:

&L(V) = f/av(x x (T -n))dA.



6. Part IV — Newton-like laws for a localized
electromagnetic knot

6.1. Localized, persistent energy region

Let K(t) be a moving region such that energy is concentrated inside it and
boundary flux is small.

Ex :/ ud’z, Px :/ gd’z.
K(t) K(t)

6.2. Center of energy and emergent inertial mass
1

= — xudz.
Ex Jrw

Xk

When boundary terms are negligible:

) Er .
Ex Xg z/ Sd®r, Px~ —2Xg.
K C

Define:

Ex

Mg i = —.
2

6.3. Momentum balance as the net-force law

d
Cpy=—] T ndA= Fg.
dt K /aK nd K

If Ex is roughly constant:

mKXK ~ FK.

7. Part V — Schrodinger dynamics as a narrow-
band Maxwell envelope

7.1. Maxwell wave equation for a field component

For any Cartesian component F'(r,t) of E or B:

(V2 - ;a%) F(r,t) =0.



7.2. Toroidal standing modes

Take a toroidal topology with radii R and r. Integer windings (ni,ns) give

ny N9
k= T ky = - E* = k2 + k2, Wnyn, = Ck.

Define the fundamental mode (1, 1) with (E71,w1) and

_En _ En
= — m

h

w11 ’ 02 '

7.3. Forward-time spectral projection and envelope

Define the analytic (positive-frequency) signal:
0 ~ .
FH)(r,t) = / F(r,w)e ™! dw.
0
Extract the carrier at wq:
Y(r,t) = et FH) (e ).

7.4. Exact envelope equation and controlled remainder

Substitution into the wave equation yields:

1 21 2
V2 — S92+ g+ Slly =0,
c c c
Rearrange:
2 1
0 = — 2 — 9%
! tw 2w11v w—i_ 2(4}1162 t’(/}

If the envelope has RMS bandwidth Aw with € = Aw/wy; < 1, then the last
term is bounded by O(€?) in norm.

Dropping only this controlled term gives:

(32

i) = -3 V21 4+ O(€?).

w11

Using h = Fy1/wi1 and m = Eqp/c? turns the coefficient into A/(2m), yielding:

}—12
ihOph = —%v% +O(é?).



8. Scope

8.1. Derived from source-free Maxwell structure

e energy continuity:

¢ momentum continuity:

e angular momentum flux balance

o Newton-like motion of localized energy knots as integrated flux bookkeeping

e Schrodinger dynamics as a narrow-band envelope limit with controlled
O(€?) remainder

o emergent m and A from (E11,w11)

8.2. Not claimed here

o existence and stability of knots for arbitrary initial data,
e uniqueness of the toroidal mode or its formation mechanism,
o full quantum measurement theory.

These are separate questions.

9. Closing statement

In a source-free Maxwell universe, continuity laws are identities, not postulates.
When energy localizes into a persistent knot, its coarse motion follows from
flux balance and looks Newtonian. When a toroidal mode is narrow-band, its
envelope obeys Schrédinger dynamics up to a controlled O(e?) correction.
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